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A SURVEY OF SUBNORMAL SUBGROUPS

James J. Ward

Introduction

Since the appearance of Helmut Wielandt’s fundamental paper
[27] over fifty years ago, much progress has been made in the
theory of subnormal subgroups thanks to the contribution of many
distinguished group theorists.

A comprehensive and masterly exposition of the theory of
subnormal subgroups is due to Lennox and Stonehewer. The pur-
pose of this article, based on a talk given at “Groups in Galway”
1s to present some of the remarkable results in the theory without
encumbering the general reader with technical details or proofs.
The selection of topics is not exhaustive and reflects a bias of the
author, but it is hoped to whet the appetite of the reader, who
is referred to Lennox and Stonehewer [12] in the first instance.
Notation is standard and follows that of Lennox and Stonehewer
[12] or Robinson [22].

Definition. If H is a subgroup of a group G such that
tT'He=H VzedG

then H is normal in G, written H « G.

If L «H and H <G it does not follow that L <« G, i.e. for
subgroups of a group normality is not a transitive relation, as can
be verified by examining the alternating group on 4 letters, Ay, for
instance. This may serve as motivation for the following relation
on subgroups which ¢s transitive:
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Definition. A subgroup H is subnormal in a group G if H occurs
as a term in a finite normal series

H:quHm_lq“-qHO:G (*)

from H to G, where H; < H;_| for each ;.

Notation: H 141G or also H sn G will mean H is subnormal in

G.

Definition, The length of the shortest normal series from H to
G is called the defect of I in G, written def(G, H).

Definition. The normal closure of H in G, % s (H99 €
G), the group generated by all the conjugates of the subgroup
H(HY := g~ Hg), and this is of course a normal subgroup of G
It is the smallest normal subgroup of G which contains H.

Thus if H is subnormal of defect m in G, we see that
HY < Hi<Hy =0,
Replacing G by H; we get
HH <Hy<aH,y

Iterating this process, we see that by taking successive normal
closures, in at most m steps the process terminates with arrival
at H,, = H.
Notation: Put Hy = G, set H(z’+1) = HH6) then Hay=HY <
Hy (as in (*) above) Hpy = HHo < i < Hy and in general
H(z-) < H;, the ith term in the normal series (*).

The series H;y is the most rapidly descending series from G
to H, and H 1<G if and only if H = H;y for some 7 > .

Examples:
(i) Al normal subgroups of a group are subnormal of defect

(it) Subgroups of order 2 in Ajs have defect 2 in As.
(iil) In Dym o (a,8]a®"™ ™" = 42 = 1 p=14p — a”l),m > 3 the
non—central subgroups of order 2 have defect precisely m — 1.
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Some elementary facts concerning subnormal subgroups are:
(1) Transitivity: If H <K and K <<(’ then H <<G.
(1) If H <G and 6 is a homomorphism of G onto G¥, then H <
<2G? | moreover def(Gg,H‘g) <def(G, H). ‘
(i) If H «<G and K is a subgroup of G then

HN K<<k  and def(K,H N K) <def(G,H)

(iv) If H<4G then Ng(H ), the normalizer of H in G Agly™'Hyg =
H} is strictly larger than  i.e. Na(H) > H (the converse of this
fact is false in general). Of course N (IT) is the largest subgroup
of G which contains H as a normal subgroup.

(v) If each member of a (finite) collection of subgroups H; is sub-
normal of defect at most % in G, then

4
J

is also subnormal of defect at most  in G. (If the defects of the
H; are not bounded then an example on p.373 of Robinson [22]
shows that (v) is false without this condition.)

Some of these facts (1), (ii1), (iv), (v) are valid also for normal
subgroups.

On the other hand, whereas normal subgroups have the prop-
erty of permuting with elements of G (N 4G, then Ng =ygN) and
thus with subgroups of & (N<G,H < G then NH = HNY), this is
not usually the case for subnormal subgroups. Another fact con-
cerning two normal subgroups Ny, Ny of a group (' is that Ny N,
is also normal in G. This leads to the earliest but most famous
question concerning subnormal subgroups.

The Join Problem

Let H, K be subnormal in G. Under what circumstances will
(H, K)—the join of H and K—be subnormal in G? This problem
has been the subject of intense tesearch, starting with Wielandt’s
fundamental paper in 1939 [27)/and culminating with a remarkable

result of J.P. Williams [32].
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In 1939 Wielandt proved that if G is finite and H, K are sub-
normal in G then (H, K) is also subnormal in . Thus the set
of subnormal subgroups of a finite group G forms a sublattice of
the lattice of all subgroups of a finite group G. In fact Wielandt
showed the result was true provided G satisfied the maximal con-
dition for subnormal subgroups maz-sn whereby every strictly as-
cending chain of subnormal subgroups of G has finite length, (so
every non—-empty set of subnormal subgroups of GG contains a max-
imal member). In the case of G finite there is an elegant proof
due to Kegel, using induction on the order of G, see [12] p.8.

A criterion to guarantee subnormality of (H, K') when H, K «
<G is that K should normalize H i.e. K < Ng(H) (**) One shows
that K normalizes H;y and since A <Q<4H-1)K and Hi<H;_hK
one obtains H;) K <<l ;1)K with defect < def(G,K). In fact
def(G,J) < def(G,H)-def(G, K). The next result is useful also.

Lemma. Let H, K 4<G. Put J = (H, K) then the following are
equivalent:

(i) J <<G,

(i) H¥ (= (H*|k € K)) «<G and

(iii) [H, K](= ([h, k(= h~*k~1hk),h € H, k € I)) a«<G.

Since [H, K]« HX 4 J one only has to show (iil) = (i). (See
(12] p-4)

If G is a nilpotent group of class ¢, that is, if

[G,G,...,G]=(1)

c+1G's

then every subgroup of G has defect at most c¢. In particular if
G'" =[G, G] is nilpotent then from part (iii) of the Lemma above
it follows that for any subnormal subgroups H, I\ of (G their join
is also subnormal. A generalization of Wielandt’s result is due to
Robinson [19].

Theorem (Robinson). Let H, K <<G and suppose G’ satisfies
maz — sn. Then J := (H, K) <<G.

Another easy criterion—a companion to (**)—is the follow-
ing:
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Lemma. Let H,K<<G and putJ = (H,K). If HK = K H then
J <G,

(Of course, KH = HK does not imply that K < Ng(H).)

So it is clearly of interest to the join problem to determine
conditions under which H and K permute. (If J equals HK H
then in fact J equals HK, but a counterexample due to R.S.
Dark [12] p.20 shows that one can have H, K <<G,J = HKHK
but J not subnormal in G!) A famous permutability criterion is
due to Roseblade [23].

Theorem (Roseblade). If H and K are subnormal subgroups
of a group G such that the tensor product of the abelian groups
(regarded as Z-modules)

H/H' Q) K/K'

is trivial (one says H is orthogonal to K, written H LK) then
HK = KH, and thus (H,K)<<G. Moreover if H and K are
not orthogona] then there exists a group Gy such that H ~ Hg<
<1G’07 K~ [XQ <l<lG0 and H()[xo :,lj: IXOHO

In 1958, Zassenhaus [33] published an example [Exercise 23,
Appendix D in his book “Theory of Groups”] showing that the
join of two subnormal subgroups could fail to be subnormal. The
group G constructed by Zassenhaus consisted of a module with a
specially defined basis, over Z, extended by suitably chosen auto-
morphisms. This group was countable and abelian by nilpotent
of class 2 i.e. G/A was nilpotent of class 2, with A abelian. Two
subnormal subgroups H, K each had defect 3 in G and their join
(H, K) was nilpotent of class 2 but not subnormal in G since one
shows J = (. (See also Robinson [22] p.375.) It is worth re-
marking that in an example H cannot have defect 2 since then
H<aH%aG and so HX 9« HS <G, K normalizes HX and one would
get J = (H,K)<<G. So in an example the defect of H(I') must
be at least three which is the case in the Zassenhaus example.
Also G’ is not abelian and neither is J. Thus in some respects
Zassenhaus’ example is the minimum one can get away with!
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To conclude with a necessary and sufficient criterion to ensure
that the join of a pair of subnormal subgroups is subnormal, the
following is a result of J.P. Williams [32]:

Theorem (Williams). Let H, K be groups:

(i) If H/H' ® K/K' (as an abelian group) is the (direct) sum of
a group U of finite rank and a periodic divisible group V (c.f.
Robinson [22] pp. 94-97) then (H, K) is subnormal in all groups
in which H and K can be subnormally embedded.

(ii) Conversely if H/H' @ /K’ does not have the structure in (i)
as an abelian group, then there is a group G containing H, K as
subnormal subgroups such that (H, ) is not subnormal in G.

The proof of this theorem (which is the subject of chapter 5 in
[12]) involves extensive development of ring-theoretic machinery
first introduced by Philip Hall in the 1950’s.

The Wielandt Subgroup

In [1] Baer defined the “Kern” of a group as the intersection

() Ne(H)

HLG
of the normalizers of all the subgroups of GG. In 1958, Wielandt
[28] considered an analogous intersection

w(G)= (] Na(S)

SqaG

i.e. the intersection of the normalizers of all the subnormal
subgroups of G.

Whereas w(G) may equal (1) as in the case of G = Dy
the infinite dihedral group, Wielandt proved the following rather
surprising results [28].

Theorem (Wielandt). If |G| is finite then w(G) # (1).

Theorem (Wielandt). Let G be an arbitrary group. Then
w(G) contains
(1) every simple non—abelian subnormal subgroup of G and
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(ii) every minimal normal subgroup M of G where M satisfies the
minimal condition for subnormal subgroups. (min — sn).
[Indeed, if G satisfies min— sn then Robinson [20] has shown that
|G : w(G)| is finite.]

If G is a finite group, then w(G) # (1). Consequently
w(G/w(G)) # (1).

Setting wo(G)) = (1) and wip1(G)/wi(G) = w(G/wi(G)), for
some finite 7 one will have w;(G) = G. The smallest such i is
called the Wielandt length of the group G.

The Wielandt subgroup has been the subject of a paper by
Camina [4] in which he investigates relations between the Wielandt
length, derived length and Fitting length for a finite soluble group
G. This work has been improved by Bryce and Cossey [3] who ob-
tain best possible bounds for both the derived and Fitting length
of a finite soluble group in terms of its Wielandt length. Ca-
solo [8] has extended these results to infinite soluble groups of
finite Wielandt length. Another result concerning the Wielandt
subgroup due to Brandl, Franciosi and de Giovanni [2] is the fol-
lowing

Theorem. Let G be a polycyclic group (G has a normal series
with each factor cyclic) which is either

(a) metanilpotent (an extension of a nilpotent group by a nilpotent
group) or

(b) abelian by finite. Then w(G)/Z(G) is finite.

The Wielandt subgroup also has the property that since w(G) <
G, a subnormal subgroup K of w(G) is subnormal in ' hence
Ng(K) > w(G) thus K «w(G). In other words, w(G) is a group
in which normality is a transitive relation. Such groups are called
T-groups and for groups in this class G = w(G), and all subnormal
subgroups of GG have defect 1. Finite soluble T-groups have been
classified by Gaschiitz [9], and Robinson [18] has shown that in
fact every soluble T—group is metabelian.
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Groups with every subgroup subnormal

Of course, if G is an abelian group, then every subgroup of G
is subnormal. More interesting is the case of non—abelian groups
with every subgroup subnormal.

Suppose first G is a non-abelian group with every subgroup
normal, then G is a non—abelian Dedekind group and the struc-
ture of G is described in [Robinson, [22] p.139]; for instance Qs is
an example of a non-abelian Dedekind group.

In view of the fact that if G is a nilpotent group of class
c then every subgroup of G is subnormal with defect at most ¢,
Roseblade [24] was able to show that if G is a group in which every
subgroup is subnormal of defect at most d then there is a function
f(d) such that G is nilpotent of class at most f(d). A specific
result of Heineken [10] and Mahdahvianary [14] in this area is the
following: If all cyclic subgroups of GG have defect at most 2, then
G is nilpotent of class 3.

However, a celebrated example due to Ieineken & Mohamed
[11] shows that there are groups G in which every subgroup is
subnormal (but there are no bounds on the defects) and Z(G) = 1,
so (¢ is not even hypercentral. Moreover, for H < G one has
Ng(H) > H, ie. G satisfies the so—called normalizer condition,
whereby every proper subgroup of (& ista proper subgroup of its
normalizer.

Casolo [6] has shown that if G is a group with every subgroup
subnormal, then for some n, G = G®+1) je. the derived series
breaks off after finitely many terms. Recently Mchres [16] proved
that a group G with every subgroup subnormal is in fact soluble.
It would appear that groups in the class of groups with every
subgroup subnormal, are in fact metanilpotent.

The class of B, groups G in which subnormal subgroups have
defect at most n has been investigated. B; groups are the afore-
mentioned T—groups, in which normality is a transitive relation.
Since simple groups trivially are Bj—groups, one restricts atten-
tion to soluble B, —groups. An interesting problem is to try and
bound (if possible) the derived lengths of soluble B,—groups in
terms of n. Examples due to Robinson [21], show that even in
the class of By—groups all derived lengths can occur (using a con-
struction based on iterated wreath products) but these groups are
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torsion free. In the case of periodic soluble By—groups Casolo [5]
has shown that they have derived length at most 10. In the case
of finite soluble By—groups Casolo has shown that they have de-
rived length at most 5 and Fitting length at most 4. An example
of McCaughan and Stonehewer [13] shows that this last result of
Casolo is best possible. Thus there is much scope for investigat-
ing the interrelationship between the derived length and Fitting
length of soluble periodic Bp—groups.

Criteria for Subnormality

Let H be a subgroup of G. Suppose that HK = KH for any
subgroup K of G, we say H is a permutable subgroup of G or H
is quasinormal in G, written I per G. Clearly normal subgroups
are permutable. Not every subnormal subgroup is permutable
(one can verify this by examining A4). Not every permutable
subgroup is normal, if G = (a,bla® = b = 1,07 ab = a5) then
(b) per G, but (b) is not normal in G. Ore [17] showed that a
maximal permutable subgroup of a group G is normal in G and
as a corollary one obtains that a permutable subgroup H of a finite
group G is subnormal in G. This corollary has been extended by
Stonehewer [25] to finitely generated groups.

A more restrictive form of permutability is that of permuting
with conjugates i.e. VV9 = VIV for all g9 € G. A result of Ore
[17] and Szép [26], is that in a finite group & such a subgroup V
which permutes with its conjugates is subnormal in . Wielandt

[29] has considered similar criteria and the following Theorem is
due to him.

Theorem (Wielandt). Let G be a finite group and A, B sub-
groups of G such that

AB® = B*A forall zeq@.

Then

(i) If G = AB® = BAS then G = AB,

(i) A 0 BA a«G.

(i) If AB < H < G then A" O BY q4G.

(iv) If XY are subsets of G then (A%, BY] <G,
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Another result of Wielandt’s follows: First note that if N <G,
then (i) N < (N, g)Vg € G and (ii) [n,g9] € NVy € G. Moreover
the converse of (i) or (ii) implies N <« G. If H <« <G then clearly
(1) " H<«<{H, g)Vg € G and (ii) ’ for any g € G and sonie positive
integer n and h € H,[g,h,...,h ] € H. Wielandt [30] has shown

n h's
that for finite groups (i)’ and (ii)’ are each sufficient for H to be
subnormal in G.

Theorem (Wielandt). Suppose H < G and ( is finite. Then
the following are equivalent to H <<G':

(i) H<<(H,g9) YgeG

(ii) H a<(H,HY) Vge€G.

(iii) H<<(H,H") Yhe H gegG.

To conclude our survey we mention the subnormalizer of a
subgroup. The normalizer of a subgroup H in a group G, Ng(H) =
{9 € G|H<(H,g)}, and H aG < Ng(H) = @. Consider the fol-
lowing:

Definition: Denote by S¢(H) = {y € G|H <<(H,g)} the sub-
normalizer (in G) of the subgroup H.

One must note that in general Sg(H) is not a subgroup!
Take H = ((12)(34), (13)(24), (14)(23), (12)) and K = ((23)(45),
(24)(35), (25)(34),(25)). Then |H| = |K| = 8 and they are Sylow
2-subgroups of S5, the symmetric group of degree 5. |[HN K| = 2
and H N K = ((34)) is not subnormal in S5. Of course H N K «
<H, K. If the subnormalizer of H N K were a subgroup, it would
contain # and K and hence would contain (H, K') which is Ss,
a contradiction, because H N K is not subnormal in S5. In this
example HK # K H as subsets. The following result shows when
the subnormalizer is a subgroup.

Theorem (Maier [15], Wielandt [31]). Suppose G is a finite
group and G = AB with A,B < G. If H 9<A and H < <B then
H <G,

Thus in a finite group G whenever H «<l/, H « <V(H, UV

subgroups of G) implies H <« <(U, V) then Sg(H) is a subgroup.
Wielandt [31] has formulated a number of conjectures regarding
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criteria for subnormality of a subgroup H in the finite group G
where G = AB for subgroups 4 and B.

The Class of s,—groups

Call G an s,—group if the subnormalizer of every subgroup of
G is itself a subgroup. For any =lement 2 in a group &, denote by
Eg(z)={9€Gllg,z,...,z ] =1 for some n € N}. If we denote

[
n o'ls

by E—groups the class of groups in which E¢ () is a subgroup for
every z in G then a recent result due to Casolo [7] is the following:

Theorem (Casolo). Let G be a finite group. Then G is an
sp—group if and only if G is an E—group.

In addition, Casolo has proved that a finite group G is an s,,—
group if and only if the intersection of any two Sylow subgroups
of G is pronormal in G, whereby a subgroup H is pronormal in G
if H is conjugate to H9 in (H, H9). Thus as the reader can see,
there are new areas of investigation in the theory of subnormal
subgroups which yield surprising connexions with other topics in
group theory such as Engel elements or pronormality.
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