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Diagonalising a Real Symmetric Matrix

and the Interlacing Theorems

Donal P. O’Donovan

In most linear algebra textbooks the diagonalisation of a real symmetric
matrix is accomplished by first proving that the eigenvalues are real and then
proceeding to the orthogonal diagonalisation. Anton’s book [1] notes in the
preface that the first part of this can require an excursion into the theory

of complex vector spaces. The purpose of this note is to show that a more
| direct route is possible if one proves the realness of the eigenvalues and the
| orthogonal diagonalisation simultaneously.

In itself this would be of very little interest, at least for mathematics stu-

| dents, who usually handle C" as readily as R". However what one is led to,
| is something much more, namely the Cauchy inequalities, between the eigen-
| values of any finite dimensional self adjoint operator and its compressions 3],
| and also to the Courant-Fisher min-max formulae for the characteristic num-
| bers [2[, and these are topics not usually found in Linear Algebra textbooks.
| So, many mathematicians must be unaware of them. Yet the interlacing that
| one finds is both elegant and useful. For example it gives in several lines,
| the proof, that a symmetric matrix is positive if the principal minors are all
~ positive.

I find linear operators a better setting for diagonalisations than matrices,

“  so we work with them. Recall that if U is any subspace of an inner product
| space V, and T : V — V is a linear operator then the compression of T to
| U is just the operator PyT : U — U, where Py is the orthogonal projection

onto U. For students who prefer matrices, if an orthonormal basis uy, ..., u,
for U is expanded to an orthonormal basis uy, ...ur, Ups1...,u, for V then the

. matrix for PyT is just that block of the matrix of 7" whose entries are in both
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the first » rows and first » columns. For those who like pictures. So Cr () = <0 £ 1 is even
t]_l . tlr tln A - 20 if nis odd

: : : tir o tay But Cr()) — 400 or —oo when A — 400 according as n is even or odd.

T=1 t1 ... tpr = [PyT) = : : | So in both cases the graph of Cp(X) crosses or at least touches the ) - axis.

. . . | This gives a real root Ao (which must be > A;(S)). Now one solves for an

rhoe o eigenvector vy and applies the induction hypothesis to the compression of T

125 DRI . tan

to the orthogonal complement of g, giving the desired result.

Recall also that the characteristic numbers are just the eigenvalues of T,
repeated according to multiplicity, arranged in descending order

M(T) 2 Mo(T) ... 2 Aa(T),

We noted above the extra bit of information, namely that A > A1(S).
In fact we can deduce easily that if S is any compression of T to an n — 1
dimensional subspace then

as we shall write them. We will use C7()) to denote the characteristic poly- M(T) 2 2(8) = 2a(T) > ... 2 Xci(S) > M(T)
nomial for T', that is det (7' = M1).
which we will refer to as “interlacing”.

Theorem Let T be a symmetric linear transformation on a finite dimen- Again we proceed by induction. For n = 2 we have

sional real inner product space V, then its eigenvalues are real and T can be | ; 4
diagonalised with respect to an orthonormal basis. ' 0 !
Proof We proceed by induction on n, the dimension of V. If n = 1, the
statements are trivial, so suppose both statements are proven for n — 1. Let

X;]have dimel‘lsion fnTandg b’;lany n-l dime? sioxllal .SudbSp(?tce' hLet f b.e If 41 = 0 the result is immediate. If t; # 0, then Cp(X1(9)) = —-tf < 0, but
the compression o to U. hen we may apply the induction hypothesis  COp()) — +00 28 A — %00, s0 )\1(5) lies between the toots.

to 5, ‘obtaining real Che}racteristic numbers, A1(S), ..., An-1(S), and corre- | For arbitrary n, we have as before the matrix () for 7. First if any ; = (
sponding orthongrmal eigenvectors uy, .. o Un-1 Choosg ug to complete the then X\;(S) is an eigenvalue for T, and so are the eigenvalues of the matrix
orthonormal basis ug, u1,...us-1, and consider the matrix representation for gotten by ignoring the i row and the ith column. By the induction hypoth-

T | esis {A;(5)};z: interlace the eigenvalues of this second matrix. A moments

121 )\1(5)

i 1 . - |
to A (15) én ' | thought shows that {A;(S)} then interlace the set of all eigenvalues of T.
,1 1 - Next one sees that
T = : . (%) .
- Cru(S) = =t [T(u(S) = M(S)
tne1 0 An—l(S) o i=2

ne=1
= == T (S) = ()l
j=2




66 IMS Bulletin 21 1988

and
n-—1
Cr(a(S)) = =B(M(S) = 2a(8)) TT(A(S) = 22(5))
j=3
= <BIN(S) 2a(S)I=1)" T 1 (5) - a(S)
1=3
and so on.

‘Thus we see that if the A;(.S) are all distinct then the signs of Cp();(S)) al-

ternate, and the roots of Cr() interlace the A;(S). If some Ap(S) = Apy1(S),

writing
n-—=1 n-1
Cr(A) =t [T4(8) =0 = S22 TT(4(5) = A
j=1 i-1  j#i

we have A\;(S) — X as a factor of Cp(X). Hence Ax(S) is an eigenvalue for T,
and it is immediate from the form of C7()) above, that

Cr(N)  _
WS = =GR
where R is the (n — 1) x (n — 1) matrix
to ty ii + 14 Thyo tn-1
11 A(S) 0 0 0
4ty 0 A(S)

k42 0 Apg2(S) . 0
faos o .. 0 0 . Ai(S)

Applying the induction hypothesis to R gives the desired interlacing.
If (1ij)i,j=1,n is an nxn matrix then the principal minors Ay (T) are defined
as
AR(T) = det(ty;)i j=1,k

We want to show that if Ax(T) > 0 for all 1 <k < nfor an n x n symmetric
matrix T then T is positive. This follows easily if we show all the eigenvalues
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re positive. Again we proceed by induction. The case n = 1 is clear. Now
pplying the induction hypothesis to (2;;)i j=1n-1 We have all its eigenvalues
ositive. Then by the interlacing n — 1 of the eigenvalues of T are positive.
hen A, (T) > 0 shows that all of them are positive.

Finally, if TC) is the compression of T to an n — r dimensional subspace,
¢ may successively invoke the interlacing r times to obtain the Cauchy in-

M(T) = X(TT) 2 Xigr(T)

follows that )
M(T) < M (TED)

ut by diagonalisation, equality can be achieved, so

Ai(T) = min A (TC=D)

~where the min is over all n — 7 + 1 dimensional compressions, and of course
A(TED) = max{(T6Do,0) : [lo]| = 1}

hich gives the desired min-max characterisation.

We can also note that the interlacing result and its consequences are ob-
lously also true for a self adjoint operator on a finite dimensional complex
_inner product space.
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