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Introduction

This article arises from a postgraduate course in geometry given by Professor
Barry at U.C.C. As part of the course we undertook some project work on
the geometry courses of Georges Papy, Gustave Choquet and Jean Dieudonne.
Here we hope to review these three courses and their potential for inclusion
in the secondary school curriculum.

First of all, we must ask the question: why teach geometry? One obvi-
ous reason for teaching geometry is its application to real life situations and
problems. Through the study of geometry children develop practical skills in
~ such areas as measurement, calculations of areas and volumes, use of grids and
co-ordinate systems. It also gives them an understanding of the concepts of
two-dimensional and three-dimensional space. Clearly geometry has applica-
tion to topics in mathematics and can indeed be regarded as a unifying theme
in the mathematics curriculum. It provides a rich source of visualisation for
arithmetical and algebraic concepts. Geometry is essential for mastering cal-
culus and therefore all other fields that have calculus as a prerequisite. A
_major reason for the inclusion of geometry in the secondary school curricu-
~ lum is its value as a vehicle for stimulating and exercising general thinking
skills, skill in deductive reasoning and problem solving. Through its precise
use of language, geometry can also play a part in the development of skills in
communication. Therefore, geometry has an important role in the secondary

school curriculum.

k The next question is: How should we teach geometry in secondary schools?
It seems to us that there are two main approaches. One the one hand there
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some affine transformations.
The next step is to obtain distance on the plane. Here two further axioms

are introduced. The first introduces perpendicularity as an undefined notion
and lists its properties. Choquet defines orthogonal projection and the second
axiom postulaes that if two segments of equal length but on different lines have
the same endpoint then the orthogonal projections of each into the other have
the same length. Choquet next chooses an inner product whose symmetry is
guaranteed by his last axiom and having established a number of preliminary
results, he shows that for all z,y € II, d(z, y) = |ly — z||. At this stage
Choquet’s course is truly in the domain of Euclidean geometry.
In the remainder of the course Choquet deals with several other topics
geometry. He examines transformations of the plane and pays particular
ttention to the group of isometries I, which fix a given point o and to the role
f the abelian subgroup R, (consisting only of rotations) of this group. This
lays the groundwork for his definition of angle as rotation and so he obtains
mmediately that the set of angles with given vertex o is an abelian group.
In order to measure angles, Choquet relies on the existence of continuous
‘homorphisms from R onto the multiplicative group of complex numbers with
_absolute value one, having shown that the set of angles with given vertex is
isomorphic to this group. He treats orientation algebraically and shows how
_an orientation of the plane can be obtained using either the group of affine
ransformations or the group of isometries. Choquet also treats elementary
trigonometry and the geometric properties of the circle.

is the synthetic approach, which was used by Euclid and later completed

brought to logical perfection by he German mathematician David Hilbert 0;

the other hand we have an approach to geometry which uses linear al e;b :

Choquet, Papy and Dieudonne all favour the latter. =
We now outline their courses.

Choquet

While Choquet agrees that children benefit from an approach to geometry
base.d on concepts drawn from the real world such as parallelism perpendi¥
ularity and distance he believes that from the mathematician’s p,oint of vi ;
the most valuable method of defining a plane as a 2-dimensional vector sp .
over‘R having an inner product. In order to reconcile these ideas he uses s
thetic ax.ioms and sets out to demonstrate the algebraic structure of the pla
Then using the tools of linear algebra he develops the course in geometry,
. (.Jh'o.quet’s first step is to develop the vector space structure of the pl.z.m 5
His initial axioms are concerned with incidence properties of points and line
z%nd also deal with parallelism. Parallel projection is the natural orders ones
line and so he can deal with betweenness of points. His next axiom assum ﬂ
that parallel projection maps intervals to intervals and therefore preserv::;
betweeness of points. Choquet makes a strong point that geome’try should
not be burdened with the task of constructing the real numbers and in hig
courses.he assumes that R is a totally ordered archimedean commutative
field. His next axiom assumes distance on a line. ‘
NOVY Choquet has both distance and order on every line D, so he can chose
any point 0 € D and one of the natural orders of D to obtain a pair (Do
cal‘led a pointed line. On this pointed line he can define operations unde;'g
unique xs?morphism. Thus each line (D, o) is a vector space. Choquet next
defines midpoints and postulates that parallel projection preserves midpoints:
He can now define a parallelogram as a quadruplet of points (a,b,d',b') suc'
that .(a., a') and (b,b') have the same midpoint. Having chosen a,n,y ;oi,nt o€l
as origin and writing (II, 0) for the plane IT with origin chosen at 0. Choquet
fieﬁnes addition in II to be the operator (z,y) — z + y where (0,2, +3 )
is a parallelogram. He can show that addition is well defined and ,pr,oves tl,xy
((TL, 0), +) is an abelian group. He next defines scalar multiplication and shows
that (I1,0) is a vector space. He uses translations and homothetic maps
show that for any a,b € II the vector spaces (II,a) and (II,5) are isomorphi
Having established the vector (space) structure of the plane Choquet discuss

Papy

In Papy’s opinion, linear algebra provides the best approach to geometry. In
his course he uses synthetic axioms to help him represent the plane as a vector
_gpace. He begins with three axioms of incidence, then he defines parallelism
‘and direction and his fourth axiom states ‘Every direction is a partition of the
plane’. At this stage, Papy gives his perpendicularity axiom. ITe now defines
_parallel projection as well as the notion of equipollence, which is extremely
important in this course.

Ile proves that equipollence is reflexive and symmetric and by introduc-
ug the axiom ‘Equipollence is transitive’, he deduces that equipollence is an
quivalence relation. The equivalence classes are called translations or vectors
nd the set of translations forms a group under composition. By fixing a point
in the plane II, every point « € II will define a vector oz and Papy proves
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and cubic polynomial functions. This lack of a continuity axiom precludes the
‘measurement’ of angles in the usual sense, wich Dieudonne claims is rightly
part of analysis and has nothing to do with algebra or geometry.

He now goes on to define a Eucidean Plane as a two-dimensional vector
space over R with an inner product attached to it. All the standard affine
results and properties (including axiom) can be deduced as theorems for the
Papy can lay off multiples of an interval of the form p/2(p,q € N) along _ vector space axioms alone, with suitable definitions of line and parallelism.
line. By inserting an archimedean axiom he makes sure he reaches beyon For example, denoting the vector space by E, for 0 #b € E he defines a line
each point on the line and his continuity axiom ensures that every point of s
the line will be contained in one of his subgraduations. Papy also uses this
process of graduation to build up the real numbers and he believes that by
introducing the reals in this manner he not only enriches his Geometry but
also the concept of a real number.

He defines the abcissa of a point on a line and uses this notion to defin
aaddition on the reals. Now it is possible to prove that (R,+) is a commuta.
tive group. Papy now defines homothetic maps and uses these to define th
multiplication. He proves that (R, +,:) is a field and that R, is a real vecto
space. Next, Papy defines an inner product and the norm of a vector an
so the distance between two vectors can be defined as ||z — y||. We are no
dealing with Euclidean Geometry and results such as Pythagoras’s Theorem
are easily proved using the vector space structure. }

From here, Papy goes on to consider the classification of isometries. H
discusses the group of angles and the isomorphism between this group an
the group of rotations. (He defines angles as ‘rotations which have lost thei
centres’). He also considers the field of similitudes, complex numbers an
trigonometry.

that (ITo,+) is also a commutative group.

At this stage, an order axiom is introduced and now half-lines, half-plane
etc. can be defined. Papy defines midpoints by using equipollence and s
begins the important process of graduation of the line, which will integrat
distance into his course. Using transitivity of equipollence and also midpoint

L={a+X:A€R}=a+D, a€kE

here D = {Ab: A € R}. is called the direction of L. Then Ly = a3 + Dy
and Ly = ag + Dy are parallel if and only if Dy C D (or vice versa). It can
be shown that:

(i) For distinct Ly,Lz lines in B: LinLy=0or Ly N Ly = {z}.

(ii) Given Ly a line in E,c € E, then there exists a unique line Ly in E such
that ¢ E_Lg and Ly is parallel to Lq. ‘

(iii) Through any pair of distinct points ¢1,cz € E there is one and only one
line.

Using the total ordering on R, he can now define in an obvious way the
oncepts of midpoint of a segment, betweeness, half-line and line segment. ‘
The standard definitions of translation and affine map are also introduced
\ere viz. if I,F are two dimensional vector spaces, a € E, then t,: E — F,
a(z) =a+zisa translation of E by a, while u : E — F is an afline map
fu=t,oV, where t, is a translation of F (b € F arbitrary) and V' a linear
map from E to F. We get parallel projections by noting that any two distinct
ines intersecting at the origin yield a direct sum decomposition of E (ie. are
upplementary subspaces) and so any z € E can be decomposed into the sum
two unique elements, one taken from each of the lines.
Placing an inner product on E now makes E into a Euclidean plane. We
ess here that any inner product will do and that if two inner products are
oportional (fis proportional to ¢’ if § = )0’ for some A > 0) then they both
duce essentially the same Buclidean structure on E. This is not true for non-
oportional inner products. Via the inner product. we now have immediate
cess to the Eucidean concepts of orthogonality, perpendicularity, distance
he plane and angle, along with all the standard results from synthetic

Dieudonne

Dieudonne’s geometry course is based completely on the concepts of linear
algebra— he makes absolutely no concessions to synthetic methods. In fact hi
main reason for writing this book is to influence secondary school mathemati
courses away from synthetic geometry towards a greater acceptance of linea
algebra as a method of developing Euclidean plane geometry. k

As Dicudonne’s will be dealing with vector spaces over the real numbers
he begins by listing a set of axioms for R which is necessary and sufficien
for his course. In particular, these axions make R into a totally orde
field. Even at this early stage his puritanism intrudes, because instead o
continuity axiom for R, he uses an Intermediate Value property for quadrati
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Fucliden geometry. For example, with the usual definition of ort,hog(A)nality%é
we can deduce a version of Pythagoras’ theorem as a one line corollary OF
Minkowski’s inequality, which itself is easy to prove in two dimensions. 'l‘woé ‘
lines are perpendicular if their respective directions are orthogonal subspaces
and, using a metric d induced by the inner product, we define a circle, for
some fixed zp € ££ and A € R, as a set {z € I : d(z,,z) = A}, Dicudonneyy
treabment of plane geomelry finishes with a glance ab trigonometlry and ui
development of complex numbers, :

Because Dicudonne is intent on introducing linear algebra as well as geor
ctry, some of his constructions are more elaborae than necessary if the maiy
emphasis was on geometry. For example, his introduction of symumetry abo k
the origin develops the concepts of eigenvalue, eigenveclor and eigenspac
whereas in a geomelric context we could simply define this symmetry map
u: B — I,u(z) = —z. A treatment of plane gecometry is given in [1], ai
this even manages to avoid the explicit introduction of vector space axioms
by apprpriate definitions of addition and multiplication in R

This brief outline demonstrates clearly that Dieudonne’s approach to g
ometry differs radically from he synthetic approach and consequently from the
methods of treating plane geometry in most elementary school courses.

Conclusions

All three writers are agreed that the ideal way to approaxh geometry is v
linear algebra. Consequently, they wish to arrive at a vector space structu
as soon as possible. However, here Dieudonne disagrees with the approac
adopted by both Choquet and Papy. Dieudonne claims there is no need
‘scaffold’ from a synthetic to a vector space structure, and so operates imm
diately in a vector space.

Choquet and Papy adopt a similar type approach in their courses. The
both begin with a set of basic (affine) acioms and graduate develop an algebra
structure on the plane by the addition of more synthetic axioms as require
However, there are areas of difference. For example, whereas Choquet assum
distance on a line and he real numbes, Papy uses graduation of the line t
develop these concepts. . k

They are all agreed, however, that linear algebra gives us what Choqui
calls a ‘royal road’ to geometry.

Before discussing the feasibiity of introducing geometry via linear algeb"
into second level school courses, it might be fruitful to outline some advanta

 of such an approach. One fundamental advantage is that, with linear algebra,

~ ‘there are few mathematical concepts simpler to define than those of vector

analysis, geometry and topology. Consequently there is great advantage to be
gained from acquainting the young student at an early stage with the essential

- this point is that a linear algebra approach to geometry would bring second

ot all one way, we should note that geometric concepts and constructions

linear algebra more accessible to schoolchildren.

Approaches To School Geometry

‘everything in elementary geometry can be obtained in a very straightforward
manner by a few lines of trivial calculation’ (3, p.10]. This is a powerful
benefit, particularly when coupled with the fact that, in linear algebra, we
have a theory ‘where everything is ordered naturally around a few simple
central ideas which also form the basis for later studies’ (3, p.10}; after all,

space and linear mapping’ (3, p.11].

Another advantage is that linear algebra ‘has become one of the most effi-
cient and central theories of modern mathematics. Its applications now range
over a wide and rich field, from the theory of numbers to theoretical physics,

principles underlying this branch of mathematics’ [3, p.10]. Closely allied to

level mathematics courses more into line with university teaching (3, p.10].
To show that the advantages of applying linear algebra to geometry are

give ‘life’ to some of the ‘drier’ areas of linear algebra and so should make

The final two advantages are inextriciably linked: ‘From a mathematical
point of view, the most elegant, mature and incisive method of defining a
plane is as a two-dimensional vector space over the real numbers having an
nner product’ [2, p.14]. Along with this we have the that the concepts of
vector space and inner product, with their developments, give us a logically
perfect ‘royal road’ to geometry which we cannot afford to improve.

We will now look at the question of a linear algebra approach to geom-
etry in schools. If we assume that geometry should be taught in secondary
schools {either as part of the core curriculum or as an option extra) it is worth
considering if we should remain wih the old synthetic (congruence) approach
or whether a change to linear algebra would be beneficial. (Time constraints
on the curriculum probably precludes a proper treatment of both.) In the
urse of this project we gathered some information on the second level ge-
metry syllabuses of about eight countries (West Germany, Sweden, Belgium,
ance, England, Switzerland, Portugal and Canada) and in most cases (parts
France, in particular, being exceptions) it appeared that synthetic methods
e still prefered, with scant and superficial regard given to linear algebra.

The main arguments against a linear algebra approach to plane geometry
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are outlined in Prof. Barry’s article {0]: ¢ ... to subjugate geometry to lin.
ear algebra leads to an impoverishement of geometry. They (i.e. these who
favour an old-fashioned (congruence) approach to geometry) value the visual
as a helpful rewarding method of reasoning, they are reluctant for pedagog.
ical reasons to impose extra unnecessary layers of abstraction on the young,
and they value how mathematics can arise naturally in the small in geometry,
growing from simple to more complex situations, in contrast with having to
deal from the start with a large, abstract, complex system’. There are ¢
sentially two criticisms of linear lagebra here, which can be summarised as
follows:

(i) An implicit criticism that the ‘visual’ is lost when linear algebra is applie ;
to geometry. :

(if) That increased (and unnecessary) abstraction is unhelpful to the young

We will examine these in order:

(i) The first thing we note is that the visual is not totally lost when
we move over to linear algebra. Dieudonne himself recommends the use of
instruments such as pantographs and affinographs to instil the idea of the:
‘geometric transformation of the plane or space as one entity’. He also suggests
that the operations of vector addition and scalar multiplication in a two
dimensional vector space can be illustrated ‘by a few months working wi
squared paper’ and this ‘should be ample to familiarise pupils with the us
of these (vector space) axioms and to prepare acceptance of the fact that th
algebraico-geometrical edifice is founded on properties whose practical trut
is empirically demonstrable.

However we feel that the whole question of visual aids to reasoning involv
ing children between ages 13 or 14 and 17 or 18 shuold be examined mor
closely. There is a certain ambiguty in stressing the use of methods whic
encourage visual aids to reasoning whilst simutaneously telling children tha
diagrams in no way constitute a proof. The residual effects of this ambigu
ity are sometimes still apparent even at university. (If we look upon visua
aids to reasoning as a subset of intuition, then the case of probability theor
is applicable, where, if something is intuitively correct, it is most probabl
wrong). Clearly at primary level it is essential to use structures which are
concrete and easily visualisable, but perhaps at the 1sat, 2nd and 3rd years i
secondary schools we should begin to discreetly introduce abstract axiomati
systems, with the emphasis initially on concrete examples. (ii) We ha
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already touched upon this criticism in earlier parts of this paper. Clear!y ab-
stract systems cannot be introduced in the early primary years, but children
in secondary schools are introduced to mny abstract concepts and seem to be
able to deal satisfactorily with them. v

The question of the ‘necessity’ of introducing abstract linear algebra to d«'eal
wih geometry in secondary schools is the very point at issue, and ?o deal with
this properly would lead us into a critical discussion of synthetic methods,
which would lead us too far afield. Suffice to say that Papy, Choquet and
Dieudonne are convinced of the necessity.

A proper discussion of geometry a second level enevitably involves ques-

~ tions of mathematics and pedagogy. Whilst we have some little competence

to deal with the former, we are com mpletely ill-equipped to deal with the
latter. Our aim therefore is to raise questions and stimulate discussion, the

~ ultimate outcome of which, we hope, will yield a course which will simultane-
~ ously satisfy the degree of rigour required by mathematicians as well as being
~ accessible to children in secondary schools.
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