We can now state Martin's axiom (MA):

Suppose (P,s) is a partially ordered set satisfying the count-
able chain condition. If (Di} (i € I) is a family of dense
subsets of P with |I| < 2%, then there is a compatible sub-

set G such that G N Di £ @ for all i e I.

An observant naive set theorist will notice that MA follous

from the continuum hypothesis (CH).  However it has also been

shown that (ZFC + MA + negation of CH) is consistent., (By

consistent we mean that if ZFC is free from contradictions then

so also is the above.) Indeed it is also known that ZFC +

(v=L) is consistent.

Gholah's answor Lo Lhe Whitehoeud problom was bthis: In
(ZFC + MA + negation of CH) there is a group A {of cardinalit
¥;) which satisfies the conditions of Whitehead's problem but .

A is not free.

The outcome is, of course, that for naive set theorists
the problem is undecidable! This of course was a considerable
shock to most people working in Abelian groups. (See Eklof

[3] for a very readable discussion of this area.)

RECENT DEVELOPMENTS

While the Whitehead Problem is of no direct importance
for the Realization Problem, the techniques developed by Shelal
in his 1974 paper (and subsequently extended by him) have bec-
ome the major tool for tackling the problem. The following

results indicate some of the many recent advances made:
1. (zFC + (v=L)). Fvery cotorsion-free ring is an endomor-
phism ring. (Dugas and Gobel, 1881).

(A group is cotorsion-free if it is torsion-free, reduced

and contains no copy of Jp, for any p.)

(ZFC). If A is any algebra over a complete discrete
valuation ring R then there exists a R-module G having

A as its "essential®™ endomorphism rTing (Dugas, Gobel and
Goldsmith, 1982).

(zFC). Every cotorsion-free algebra is an endomorphism
algebra (Dugas and Gobel, 1982).

i
The state of thg art for the Realization Problem (in 1984)

has been very elegaq&ly presented in a unified approach by
Corner and Gobel {2]. Their results are based on a combinat-
ional technfﬁue devised by Shelah. In very recent work, Dugas
and Gobel and Gobel and Goldsmith have established (in V = L)
that most realizations can be obtained in classes of groups
which are almost free {in the sense that all subgroups of card-
inality less than the cardinal of the realizing group are free).

Some of the results so obtained are undecidable in ZFC.

CONCLUDING REMARKS

One of the principal objectives in writing this paper is to
convince non-logicians that set and model theory will have a
role in our subjects once we deal with any uncountable struct-
ure. (since W is uncountable that takes in most of us!)
Thls lmpacl ls perchops mosl appoaront Lo Abulian group Lhoory
but the reason for this is clear - finite Abelian groups are
completely classified being direct sums of cyclic groups.
However other areas of algebra, topology and analysis will

slowly but surely become involved also.
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n is itself prime).

So, for example, p(4) = 0, p(6) = 1, u(7) = -1, plaz) =

The function M(n) is then defined as
n

mn) = Loute).

The following table gives the first twenty values of this
function:

n |1]2] 3145|6789 i10{11|12{13|14|15]16[17]18|198]20
Min) “2|-1(-2)-2{-21-2 | -1]-2]|-2|-3]-2]-1|-1|-2|-2|-3|-3

—

=
i

—_

If you were to continue the above table out into the hun-
dreds or thousands, you would discover that the behaviour of

the function M(n) is quite erratic, fluctuating wildly from

positive to negative. But, the value of |M(n)l always appear
to be less than vn, i.e. -

[m(n)] < /n (1)
for all values of n. Since the Riemann Hypothesis follous

(fairly easily) from any universally valid inequality of the

form

[m(n)] < A/n (2)

for A a constant, Stieltjes' claim in his letter to Hermite

to have proved inequality (2) for some A, would have, if true,

resolved Riemann's problem at ance. It was because of this
claim of Stieltjes that when Hadamard wrote his now classic
and greatly acclaimed paper proving the Prime Number Theorem
in 1886, he apologised for publishing a proof of an already
established result. (It was known that the Prime Number
Theorem follows from the Riemann Hypqthesis.) In fact, as
we now know, Stieltjes was in all probability wrong in his
claim, and his failure to ever produce a proof may_indicate

that he himself realised his error. But as will become clea
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it has taken the most powerful computing machinery available
in 1885 to settle this matter of inequality (1) conclusively,
and even then no one has produced a specific counter example

to the inequality. Inequality (2) for A > 1.06 remains un-
solved!

The first systemat%c investigation of the problem by com-
putational means was iw”1897 when F. Mertens produced (by hand
calculation) a SD-page;table of selected values of p(n) and
M(n) for n up to TD,DDb. Since all his tabulated values sat-
isfied inequal{ty (1), he concluded that the inequality was
indeed 'very probable!, Though his conclusion was wrong,
it was this work which led to his name being attached to the
conjecture. The Mertens Conjecture is the assertion that
inequality (1) is valid for all values of n. (Sstieltjes him-
self had also conjectured that the constant A in his claimed
inequality (2) could be taken to be 1.)

The considerable computational evidence obtained subseq-
uent to Mertens' work all tended to support the conjecture.
In a series of papers betuween 1897 and 1813, R.D. von Sterneck
published additional values of M(n) for n up to 5 x 10°%, and
in 1863, G. Neubauer computed all values for n less than 108,
and selected further values for n up to 10!°, In 1979, m.
Youinaga reached 4 x 10°, All these values satisfied not

only the Moctons Tonoquality (1), Lul Lho eyon alrongor
Im(n)] < o.6vn. (3)

The first value of n for which |[M(n)| 2 0.5/n is n=7,725,038,629,
when M{n) = 43,947, This was obtained by Cohen and Dress in
1978, who calculated m(n) for all n up to 7.8 x 10°, But

even they did not find any value for n for which inequality (3)
is violated. Thus the numerical evidence in support of the
Mertens Conjecture is quite strong - at least it seems so to

the human mathematician used to dealing with much smaller num-
bers. (In point of fact the numerical evidence in support

of the conjecture had been 'discounted! long before the final
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The first step in attacking the Mertens Czni?HEd et
i efi
ytically involves regarding the function M as

gative reals X. To
] is the largest

on the natural numbers but on all non-ne
do this simply let M{x) = m({x]), wheref[x. S
integer not greater'than x (with m(x) =10 if %

}
uality (1) can now be re-uritten as (for all x 2 )

Ineqg-

Im(x)]x-ﬁ <1
and inequality (2) as (for all.x 2 a)
]m(x)lx'ﬁ <

Stieltjes claimed to have proved (5), and conjectured (z).
Mertens thought that (4) was 'probable’. The present day

conjecture is that, on the contrary

lim sup |M(x)|x"i = @, (8)
x+o0

(This remains, however, an unproved conjecture.)

The result of te Riele and Odlyzko which disproves the Merten

Conjecture is that

lim sup [M(x)|x-% > 1.08 (7)

X->-c0

-3
(No single x is produced for which [m(x)]x"% > 1.08. The .
proof is indirect. The discoverers conjecture that no suc

« exists below at least 102°.)

The connection with the Riemann Hypothesis is quite eas
verified 1f ¢(s) is the Riemann zeta function, then for

Re(s) > 1 we have

- ? pln)
n=1 n®

o(s)

and some manipulation gives (for Re(s) > 1):

1 mix)
= s | ———dx.
z(s) x5+1

1

Since M(x) is constant on each interval [n,n+1), if inequality
(4) (or (S)) held, then the integral in this last identity
would define a function analytic in Re(s) > 4, which would
give an analytic coQ@inuation of 1/¢(s) to Re(s) > 4. But
then the function ;js) would have no zeros in Re(s) > %, which
is the stat%ment of the Riemann Hypothesis.

yd

In fact the Riemann Hypothesis is probably equivalent to
Im(x)| = o(x*€)

for all ¢ > 0. (This was known to Stieltjes.)

Turning now to the specific problem of disproving the

Mertens Conjecture by establishing an inequality such as (7)
we begin by setting

s

Now define
m(y) = rfl(x)x‘i = m(ey)e-y/Z_

The aim then is to prove that

lim sup m(y) > 1.06
y+w

(or indeed any such inequality where the right hand side is
greater than 1.)

The crux of the argument now is to define a function h{y)

such that

(i) for any Yor 1im sup m(y) 2 h(yg);

Y 40
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ce!) values of hs

(ii) it is possible to compute (in practi

(1ii) @a Yy can be found for which hiyg) > 1

(This approach goes back to work of A.E. Ingham in 1942.)

Without going into any details, (i) and (ii) are achieved
(Just skip over this part

by means of the following theorem.

if there are concepts unfamiliar to you.)

THEOREM Suppose that K(y) € C? (-2, @), K(y) 2 0» K(-y) = K(¥),

K(y) = o((1 + yz)-l) as y=+ «; and suppose further that if
Kk(t) is defined by
-it
k(L) = K(yle Ydy,
)
> T for some T and k(0) = 1.

1f the
then k(t) = 0 for lt] =z :

f the zeta function with 0 < B < 1 and

seros p = B * iy o

|yl <7 satisfy B = 4 and are simple, then for any Yoo

1im sup m(y) 2 he (Vo) s
y+oo
where .
( ) 61YY
h =Tk £ .
k() E i)
The simplest function which satisfies the conditions of the

above theorem is

k(t) =
o, |t| >T.

Using such a k(t) with T = 1,000, Spira (19686) showed that

1im sup m(y) z 0.5355.

Y+

The function used by te Riele and pdlyzko is
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K(t) = 9(5)

where T = 2515,286 .« is the height of the 2,000th zero of

the zeta function and

(1 - |t])cos(mt) + rVsin(m]t]), |tl =

Findi%g the value of yg for which the corresponding fun-
ction hK(yo) is greater than 1 then involves an accurate (100
decimal digits) computation of the first 2,000 zeros of the
zeta function. This was done using a Newton process and took
some 40 hours of CPU time on a CDC CYBER 750 computer at SARA
(the Amsterdam Computer Centre). With these values available,
finding the required y, was achieved using a neuw algorithm
for diophantine approximation due to Lenstra, Lenstra and
Lovasz (1982) and took about 10 hours of CPU time on a CRAY-1
computer at Bell Laboratories in Murray Hill, New Jersey.

(ps you might imagine, the method was not a 'blind search'.
Indeed the function hK(y) only 'rarely' gives a value greater

than 0.5, let alone greater than 1.)

The 'magic value of Yo that the computer found is a neg-
ative number of the order 1.4 x 1083, For this yg» hK(yO)
1.061 (Lo throee declimal plnces). The ‘exact! values are

guoted in the paper referenced below.
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