CONVEXITY AND SUBHARMONIC FUNCTIONS

Stephen Gandinen

Thi i :
0 mhigssn:::;;:eoilves a ?imple account of some of the ways
harmonic Function convexity are related to the study of sub-
inelused in Lho d?. S?ueral recent results in this area are
siven ot the o iscussion. The article is based on a lecture
ecember 1985 meeting of the DIAS Mathematical Sym-

posium.

1. Notation

We shall be concerned wit EUCllUEEH space IR (H 2 2)
?

points of \UlllCll are de oted b)/ X = (X1, PRy Xn). We wr ite
X = X + . + and de ote t d radit I
l ‘ ( 1 ° X_) »
\ he ope b [s] rad S
centred at b)’ B(X,l‘). e Cleure and bOU“daI‘y a a subset

£ of R" wi
will be denoted respectively by E and ok

2. Harmonic Functions

A unction u on a oper subset w a IR 1s called 'IaImQ”lC
if it is twice CDIItllIUOUSly dl"EIE tlable and satis ies Lap-

1 .
lace's equation:

2%y 2
ax2 t oo + 2 g 0.
1 Ix

(Harmoni i ,
Stati:gjch:::SSL:ns.arlse naturally in gravitation, electro-
Mlternatively, :E::fcs and the theory of analyt{c functions),
the sphere 38(x O ;:9 m(u,xir) denote the mean value of U aver
in 6 if ang l’ ) enever B(X,r) C wy, a function u is harmoni
only if: ic

(1) -w < u < +w in w;
(ii) u is continuous in w;

(1i1) 8(X, 1)  w =ul(X) = m(u,X,r).
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3. Subharmonic Functions

By subdividing (i) - (iii) above we arrive at the dual

notions of sub- and superharmonicity.

SUBHARMONIC FUNCTION

(u £ -» on any component of wls

(ia) -« $u < 4+ in w
(iia) u is upper gemicontinuous (u.s.c.), i.e.
(X € w: u@&) < a) is open Va e IR;
(iiia) B(xst) @ w= u(x) s Mlu,X,r).
SUPERHARMONIC FUNCTION
(ib) =~ < u 5 += in w [u £ += on any component of wls
(iib) u is lower semicontinuous, i.e. {(x e w: u(x) > al
is open Va € IR;
(1iib) B(x,r) < w = u(X) z Mm{u,X,t)
Such functions arise naturally in many situations. For

example, if f is analytic in €, then log‘f| is subharmonic.
Again, the gravitational potential energy due to a mass dis-
We can immediately make the foll-

tribution is superharmonic.
owing observations:

¢ if and only if -u is superharmonic;

(1) wu is subharmoni
(11) wu is harmonic if and only if both u and -u are sub-
harmonics
(111) if u,v, are subharmonic and a,b > 0, then au + bv

is subharmonic.

An equivalent formulation of the definition of a subhar-
monic function is obtained if we replace (iiia) above by:

for any open set W with compact closure in W, and

n U which is harmanic

(1iia')

for any continuous function h o
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in W and satisfies h 2 u on 3W, we have h 2 u in W.

It is this condition which accounts for the name subhar-

monic.

4. One-Dimensianal Potential Theory

Laplace's equation for the real line is simply d?u/dx?:= 0,
so that harmonic functions are just linear functions of the
form ax + b (a,b € R).

cept of a subharmonic function on a subset of IR is equivalent

In view of (iiia') above, the con-
to the idea of a convex function. Thus subharmenic functions
are a generalization to higher dimensions of convex functions.
This explains why notions of convexity recur so frequently in

the study of subharmonic functions.

5. Spherical Means

Spherical means of functions have played a fundamental
role in potential theory since the pioneering work of F. Riesz
[6] in 1926.

as a function of r.

It is natural to consider how M(u,X,r) behaves
Riesz showed that, if n = 2, then M(u,X,r)
is convex as a function of log r and, if n 2 3, then M(u,X,r)
is convex as a function of rZ-n. The functions log|X| (n = 2)
and IXIZ_F| (n 2 3) arise as solutions of Laplace's equation

in R N\ (0},

Thus, when we modify a subharmonic function (by taking
its mean over a sphere of radius r and fixed centre) so that
it depends only on one variable (r), convex functions reappear.
It is worth pointing out that the same convexity properties
hold for

sup{u{Y) ¢« |y - x| =}, 1log m(eY,X,r), and

(N(up,x.r)]1/p for u 2 0 and p > 1.

6. Composition Properties

If we begin with functions of one real variable, we can

make'the following simple observations of functions:

[Convex] o [tinear] = [Convex]

[Increasing Conve}] o [Convex] = [Conuex].

('Increasing' is to be inﬂerpreted in the wide sense, i.e.
: 7
non-decreasing). /It is well known that these properties carry

across to higher dimensions as follows:

[Convex] o [Harmonic] = [Subharmanic) (1)

[Increasing] o [Subharmonic] = {Subharmonic]. (2)

However, it has only recently (see [3], [5]) been noticed that
this is a special case of the more general, but equally elem-

entary, result stated below (For applications, see [3]).

THEOREM 1. The function v¢{u/v) is subharmonic in each of

the following cases:

(i) w is harmonic, v is positive and harmonic, ¢ is convexj

(ii) wu is subharmonic, v is positive and harmonic, ¢ is
convex and increasing;
(iii) wu is subharmonic, v is positive and superharmonic,

¢ is convex, increasing, and ¢(x) = 0 for x s 0.

By taking v = 1, it is clear that (i) and (ii) include
(1) and (2) above.
it below.

The proof is gquite short and we outline

LEMMA 1. if (ua :a € I) is a family of subharmonic functions

on w and sup u, is u.s.c. and less than +o, then sup Uy is sub- .
a a

harmonic in w.




Proof of Lemma: E(X,r)c:(u=$u8 s N(UB,X,r) s M(sup uq.x,r)
o

:#sgp Y, s M(sgp uu,Xyr):

so sup U, satisfies conditions (ia) - (iiia) of Section 3.
o

Sketch Proof of Theorem: Corresponding to each part of the

theorem, ¢ can be written as:

N

(i) &(x) = suplax + b : a,b € IR s.t. at + b = ¢(t) Vte by |
(ii) o(x) = suplax + b 3 a 2 0, b € IR s.t, at + b 3 o(t) ]
Yt € R};

(1ii) ¢(x) = suplax + b : a 2 0, b =0 s.t. at + b s o(t)
Yt € IR).

Thus vé¢(u/v) can be written as

sup via(u/v) + b] = sup [au + bv]
a,b a,b

and au + bv is subharmonic for the appropriate values a,b in

each of the three cases. It is quite easy to check that

v¢{u/v) is u.s.c., and clearly vé(u/v) < +w, so the result nou

follows from Lemma 1.

Remark: Theorem 1 and its proof transfer easily to the axiom-
atic setting of harmonic spaces, and so can be applied to sub-’
solutions of a wide class of elliptic and parabolic p.d.e.'s
This is particularly interesting because (1) and (2) do not
hold for harmonic spaces, the reason being that the constant

function 1 is not necessarily harmanic in the general setting.

7. Convex Domains

tet 0 £ IR" be a domain (connected, non-empty open set)
in R", and . let u be the signed distance function given by
~dist(x, Q) if xe @
u(x) = n. =
dist(x, @) ifF X € R N\ Q,
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The following recent result is due to Armitage and Kuran [11]).

THEQREM 2. The function u is subharmonic in R" if and only

if the domain Q is convex.

The "if" part of the result is straightforward and was

already known, at least'lmpllCltly. For example, when n = 2,

jet L denote an arbltrdry straight line a xq + bez = ¢ in
n: N 9, (a1.+ bf = 1), and let u be the signed distance func-
tion from L given by u, = i(aLx1 + b x, - cL), the sign being

chosen so that ug <0 in Q. Since each uL is harmonic,

u = Sup up and u is real-valued and continuous, it follows from

Lemma 1 that u is subharmonic in Rr"

The "anly if" part requires a longer argument and is gen-

uinely new. A surprising fact about this result is that more

can be said when n = 2:

THEOREM 3. The function u is subharmonic in — R? if ang

only if @ is convex.

Armitage and Kuran give a counterexample to shouw that
Theorem 3 Fails in higher dimensions. 'For example, when
n=23, let Q be the torus obtained by rotating the disc

= ((o, P e Xy ) e (x2 - 2)% 4+ xg < 1} about the xa-axis. Then
it can be shown that u is subharmonic in Q yet Q is clearly

not convex.

8. Generalized Means

Convexity properties of spherical means of subharmonic
functions (Section 5) have analogues for "weighted means" of
such functions over other surfaces. Ta take a simple example,
if u is subharmonic in the upper half-plane’{(x1,x2) Poxy > 0}

and u s 0 on the x,-axis, then (using polar coordinates)

1
1 (T

r- J sin 6 u(r,6)de
0
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. -2
is convex as a function of v ~.

More generally, various authors over the past 15 years
have shown convexity properties for weighted means over the
boundaries of half-balls and truncated cones (of varying raditi)
and bounded cylinders (of varying height or varying radii).

In fact, these separate studies have recently ([4]) been unif-
jed into a general convexity theorem. The general mean is
defined in terms of harmonic measure, and fhe surface over which
it is defined is obtained as the level surface of the quotient
of two harmonic functions. For example, in the above case

of the half-plane, the appropriate harmonic functions are X5

and xzr_z, so the semi-circular means arise as integrals over

level surfaces of =2 and convexity is in terms of 2,

Finally, we remark that convexity properties are not con-
fined to integrals of subharmonic functions over bounded sur-
faces, for (see [2]}, for example) if u 2 0 is subharmonic on
r"1 o« (a,b) and does not grow "too quickly" as |x] becomes

large, then

X, Ln_1u(x)dx1dx2 cor OX g (a < x < b)

is a convex function provided it is finite on a dense subset
of (a,b).
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