WHAT IS A PROBABILISTIC PROOF? where x > 0 is a parameter. It is not immediately obvious

Paul MleGilld that

a, ¥ 9y = ey - (t)

This note is aimed at those who ask naive, and sometimes
not so naive, questions about 'probability'. I try to give with * denoting convolution. So we see that an analytic
. i i 1 f
the flavour of the approach. For that is what it is. A way iproof of (t) is tﬁe c%ﬂputatlon of the Laplace Transform of
of looking at problems 'probabilistically'. _ig,, the result being ¢
o o
[ B—Atq (t)dt = e~ 2Ax'

0

probabilistic arguments arise in all sorts of different !
situations, For example one comes across them in combinator- jand NOU the answer is clear.,
ics, statistical physics, differential geometry, and especially | yependent random variables then the law of their sum is given
It is this last that I shall concentrate on, in |y the convolution of the separate laws (we conveniently omit
Hence a probabilistic proof of (t) is possible

But recall that if we add two

in analysis.
an attempt to clarify the difference between a probabilistic the prooF!)-

and an analytic proof of the same result. One confusion is {f one can find two independent random variables H  and Hy'

‘such that Hx + Hy = H , where HZ has law a, for all z > 0.

that an analytic proof for one person may be a probabilistic Xty

proof to another. My definition is the very purest of all.

Namely that a probabilistic proof is one which is motivated in g5 there it is.
‘appropriate probabilistic setting in which the result will be

All that needs to be done is to find the

terms of the sample path (or individual trial).

- agbvious. To set up the answer we digress a little, and intro-
I have found it helpful to think of 'probability' as a ‘idUCE the currently fashionable theory of martingales,
factorisation, :
Problem++ Probabilistic Formulation F+E Solution | Example 2. Suppose that xn is a sequence of i.i.d. (indepen-
._ident identically distributed) random variables such that X1
where E is of course the expectation operator.  So, roughly ihas values t1 with P[X, = 1] = p. We defin€ the simple random

one argues in terms of the sample path, then integ-  jwalk as s = Z?ﬂ X One of the things to notice about this

speaking,
the definition is sequential. Thus we define the

rates to obtain the {analytic) answer. It is not claimed that |is the way

this factoring is the easiest solution, but rather that it is ) sum s when we have observed the variables X1, X2, e Xn al-

ready. One thinks of this as tossing a (biased) coin succ~-

sometimes more ‘'intuitive!' (whatever that means) or maybe more °
essively, and the picture is one of dynamic probability (the

tnatural'.
universe unfolding, etc.). It is natural from this point of
Example 1. Consider the probability density in t view to think not just of the process Sh itself, but of the
’ pailr consisting of the process Sh and the information which
X x? it has accumulated up to the time n, which we represent by the
a(t) = /___——?*exp{—ﬁ} (t > 0) P p y
2nt g-algebra Sn = o[X1,X2,...,xn). Now THINK. Suppose we are
betting on the value of St Clearly it is more advantageous
. to know the value of Sh-1 than it is to know that sg = 0.
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On the basis of 'latest is best' (intuition!) we agree that

_ - In words: 'averaging M_ over members af 7 yields m '
E[snlsn_1] = E[bn'Sn_1]. n m m

. The
only way to understand this definition is to work with it,
and by definitiaon We do this later on.

But for the moment be content with a
“few examples.
E[snlsn-1] = s 4+ E[ansn_1] = s 4+ (2p - 1),

7

?

!

Iterating one obtains Examples 3 ‘

]
that th ili i

Els - (2p - 1)s. |S ] =s - (2p - 1)m. (m < n) » (28) Suppose that thé probability space is ([0,1],2,m) where

n n'Tm® T Tm B is the Borel o-algebra and m is Lebesgue measure.

We have written it in this way to emphasise that the process the sequence of Rademacher functions Fn

Consider
[
(new word!) s,

= sgn(sin2™mx), each

- (2p - 1)n is stable under the operation of We define g, almost everywhere by

of which has mean zero.
taking the conditional expectation.

Before leaving this exam-

=0
ple we introduce the naotion of alrandaom time. Consider the %
first time T, that the random walk goes strictly positive 9, = 1[0 3] - 1[£ 1 - F1
(sometimes called the hitting time of 1). Then we might be 3 ' 1'
; : - - .3 v 1 1 3 e e
interested in computing the distribution of Tqe The question 9, 7 '[0,4] Z2'(4,4] 21[5’2] 21[2’1] =94 + 2 FZ
is how. i '

Definitions (1)

« s e o

An increasing family Fn of O-algebras of
events in a probability space is called a filtration. (
The general formula being 9, = 9,.q + 2" n‘1)f .

- n- n
Let Foo= o{fi 1 51 5 n}.

(2) A sequence of random variables Xn is said to be adapted

Up to null sets 7 is just unions
to 7, if each X is measurable w.r.t. 7 of the dyadic intervals ([k2™", (k+1)2°"] : 0 5 k 5 2" - 1}
Then
Thus 'adapted’ has connotations of being observable in

Elg |7 ] = + 2-(n-1)
the filtration at the appropriate time. The filtration Sn ‘ g”' n-1 In-1 E[fnlfn-1]

defined in Example 2 above is called the natural filtration
of the random walk s

% 941

! so by induction 9,
i
n*

{(b) IF X is an integrable random variable (so that ane can

: define conditional expectations) then the sequence ' i
adapted and stable under the conditional expectation operation,!

i.e. } ‘ Xo = ElX]7] | J
!

is an fn bounded martingale.

A martingale Mn in the filtration fn is a process which is

- is a martingale in th fil i
E[Mnlfh] = M. (m < n) e filtration 7n

\
. This is an example
of a closed martingale,

Recall how this means that E[Mn1A] = E[Mm1A] for every A € Font

i K
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pe a random walk whose i.i.d. steps are now nor-

{(c) Let v,
mal N{0O,1). By using the formula
” z At
Vﬁl? exp (- %f + VZAx}dx = e
m
one sees that efo/Eiun - An} is a martingale for the natural

filtration of U«

! I .
Definition An integer-valued random variable T 20 is said
to be a stopping time for the filtration 7 if (T = n) € }n

for all n 2z 0.

The first passage time T defined in Example 2 is

Example 4
To ses why note that .

a stopping time for the filtration Sn'
<1, s, = 1} € Sn

Thus a stopping time is one which can be observed 'as soon
Notice that the last zero before time 11
Both of these

as it happens'.

s N
cannot . Nor can the minimum before T,.

facts are alltoo familiar to gamblers.

The most important thing about martingales is not so
much the celebrated martingale convergence theorem, but rather
the fact that the definition can be made to work for stopping
Notice that, by definition of the conditional

times also.

expectation, if M is a martingale then gfm 1 = elmgl.

Doab's Optional Stopping Theorem If m_ is an Fn martingale

which is uniformly bounded up to the Fn stopping time T then

elm] = €lmgl.
Let us now construct a martingale which gives us the iaw of
: n
T We will look for a function f such that M = e F(sn)
is a martingale (for the natural filtration Sn of Sn)' Let
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us suppose that F(x) = e**. Then computing the conditional

expectation we have

E[r(sn)e'xnlsn_1] = e'}‘(n'1)eu5““1[peu + e M1 - p)le?

From .which the condition for a martingale is that

f
/ -
fex = pe! + (1 - p)e [

/
[

This is a quadratic equation in eu, with two solutions. We

want our mértingale to be bounded up to the time 1, so choose

(fFor p > 0) the positive square root

eA + eZA-

2p

4 -
u o= “(A) = log p(1 p) .

With this choice of u we can apply the Doaob Theorem at the
stopping time T and get

- AT, + uUS
Ele ! 11 = 1
Notice how we ignore the set{T1 = + =} since the martingale
is zero there. But if {11 < +e) then 511 = 1 and so
E[e'AT1] = e H(M) From this information we make various
computations. Note that
+ -
pu(0) = log 1 2 1
2p

which gives P[T1 < tw] = E—u(D) = (p/(p-1)) A 1. I1f we look

at the (interesting) balanced case p = % then we compute that
1
- AT  ———
Ele 1 =
[ ] eA + eZA -1

so by differentiation, putting X = 0, we get E[11] = 4o,
Thus the expected waiting time for first positive passage is

infinite, although the time itself is finite.

This is an example of the probabilistic method. It 1is
clearly formulated in terms of the sample path, and in the

end the answer comes by taking an expectation.
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Important Remark

The boundedness condition in Doob's Theorem

is essential. Consider the example of the simple random

walk when p = 1/2. Then T,l is a stopping time but we have

1 = E[sT1] # Elsgl = 0.

We are‘now ready to finish off this circle of ideas. We
begin with the martingale of Example 3(c) above

m, = exp[/fiun - Anl.
of this martingale Mt = exp[/?lBt - At), where Bt is called

Brounian motion (and we take BD =0 here).

There is a continuous time analogue

There are two
structural facts that we need, both of them difficult te prove.

(1) The process B varies continuously with time. This res-
ult is due to Wiener.
To state the second one we define the random time
T, = inflt >0 : B = x) .
(2) (By ¢ - x 3 t 2 0} is a process with the same lau as
X

B, which is independent of the process B . This
t Tyt

is a particular case of the strong Markov property.

It is a FACT that we can apply the Doob theorem at time

Tx to the martingale Mt. Which gives us

E[mT ] = E[ND] =1 = E[exp(JEXBT - XTX}]
X X
But using (1) By = x (at least when T, is finite) so we get
« ;
E[e~XTx] e_/?xx

Going back to Example 1 we find that Tx has law Q- But nouw

(2) shous that fy = inf{t > 0O : Bros¢ - % y} has the same :
X

law as Ty' while at the same time being independent of Tx'

Since we have the sample path identity
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the conclusion a, X qy = q is immediate,.

X+y

As we have written it here the probabilistic proof seems

to depend on the analytic proof. However one can see that

T_ has law a, directly, by using (2) and the reflection arg-
poX I ’ 4 i . . N

ument of Desire Andre. /This reasoning is too subtle for the
rasual reader. {

Jl
In conclusiﬁn we point out how this typifies the ingred-
jents of a probabilistic proof. It is certainly harder than

the original, but has an undeniable charm and utility since

“fwe have a diagram for 'why' the result holds.
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